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This paper considers the one-dimensional advection and diffusion of a passive 
scalar in the context of baker's maps of the unit interval. Our main interest is 
the thermal transport between two points held at fixed temperatures, when a 
deterministic sequence of maps of various scales are involved. Molecular 
diffusion occurs during the periods of rest between maps. We focus on the 
behavior of the transport in the limit of infinite P6clet number (or small 
molecular diffusion). Various asymptotic results are presented and compared 
with numerical calculations. Convergence to turbulent transport independent of 
molecular diffusion is observed as the number of scales is increased. 
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1. I N T R O D U C T I O N  

The problem studied in this paper  arose in work on fast dynamo  action in 
some simple flows and  Lagrangian  maps. (1'2) In  those studies the object 

was to determine the effect of iterated volume-preserving maps on the dis- 
t r ibut ion and intensi ty of an embedded magnet ic  field. In  the idealization 
adopted there, the magnet ic  field was equivalent  to a field of material  lines, 

so that the t ranspor t  of the material  vector field was calculated using a 
map. It was found that the de terminat ion  of a positive growth rate of 
magnet ic  energy (dynamo act ion)  in t roduced a nons t anda rd  eigenvalue 

problem. The operator  involved in calculating the new magnetic  field, 
TB(y)  say, from an initial field B(y)  took the form 

T B ( y ) =  f ( y )  B(z(y))  (1) 
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where f and ~ are functions, the former (as well as B) being generally 
complex, the latter being, in the case of a simple baker's (fold) map, the 
"tent" function, z (y )=min(2y ,  1 - 2 y )  for the case where the domain 
of y is [0, 1 ]. 

The iteration of (1) was seen to produce fields of increasing complexity 
in the sense that the oscillations of sign occur on scales which steadily 
reduce, and an "eigenfunction" of the problem must represent the comple- 
tion in some sense of this process. The eigenvatue problem TB = 2B is thus 
unusual, and must be understood in an appropriate weak topology. 
Modern methods of mutiresolution using wavelets would appear to be 
relevant to a formulation, but have not yet been implemented in the 
dynamo context. It therefore seems desirable to explore comparable 
problems in a simpler setting, where the advected field is scalar rather than 
vector. 

The present discussion is thus devoted to the analogous problem of 
transport of a passive scalar field in simple baker's-type maps. For flows, 
the transport of a field c(x, y, t) in two dimensions is governed by the 
dimensionless advection-diffusion equation 

c~ + u" V c -  P -  1V2c ~- 0 (2) 

where P is the P6clet number L2/DT, with L and T being length and time 
scales and D a molecular diffusion coefficient; u is the velocity of the fluid, 
u(x, y, t ) =  (u, v). In the absence of diffusion, D-=0 or P =  0% (2) states 
that the values of c are carried by the fluid, i.e., c(x, y, t) is a material field. 
We shall study the transport of c in the limit in which diffusion is either 
zero or is small relative to advection. For  definiteness we shall think of c 
as temperature and so adopt wherever helpful the terminology of heat con- 
duction to describe the underlying transport phenomenon. 

The basic problem of scalar transport is to compute average flux given 
a fixed mean gradient or boundary conditions such as fixed temperatures 
on two walls. Typically there is a scalar or matrix constant connecting heat 
flux and temperature gradient, in which case we speak of the computation 
of the effective diffusivity (or diffusivity matrix). If the flow responsible for 
the transport can be represented in some way by a map, then an underlying 
eigenvalue problem can be realized as follows: require the map to leave 
invariant the mean gradient while transporting the scalar at a fixed rate, 
and iterate indefinitely. The resulting field c would be the desired eigenfunc- 
tion (or more properly a fixed point), if indeed convergence in a weak sense 
could be established. The map could then be taken as a crude approxima- 
tion to the mixing imparted to the field by a complicated fluid motion, 
under steady-state conditions with fixed mean gradient. 
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To see how these ideas can arise in the simplest examples of baker's 
maps, consider the mapping of the unit square in R 2 given by 

--. f(2x, y/2) if 0 ~< x < 1/2 
(x ,y )  [ (2x - l , ( l+y) /2 )  if 1 /2~<x<l  (3) 

(We will occasionally refer to the domain as a square, even though the 
fields considered in this paper will not depend upon x.) Imagine that the 
material in the square is initially at temperature c(y), and diffusion is 
neglected, so that after one mapping the new temperature field is 

_=~c(2y) if 0~<y<1/2  
c'(y)-Toc(y) [ c ( 2 y - 1 )  if 1 /2~<y<l  (4) 

Suppose, for example, that c=G(y-1/2), where the constant G is the 
initial temperature gradient. The average temperature over the square is 
then 0. We shall also refer to this as the initial heat contained in the square, 
assuming a unit specific heat for the material. In fact, the mean heat in the 
upper half of the square is initially G/4, while in the lower half it is - G/4. 
After the mapping given by Eq. (4), we see easily that the mean tem- 
perature is the same in top and bottom halves of the square, equal to 0. 
Thus we can say that the baker's map has "mixed" the material about the 
midline y = 1/2. In the process an amount of heat G/8 has been transported 
across this midline (since the heat content of 1/2 the square is 1/2 times the 
mean temperature there). The mixing has removed the mean temperature 
difference between the two halves. 

In practice, real turbulent mixing involves similar processes where 
temperature gradients are locally reduced by mixing associated with fluid 
motions. Because of the complexity of the real motions, these events of 
mixing occur at various points and times, with the result that a fixed mean 
temperature gradient (imposed, e.g., by the boundary temperatures) is 
maintained, while heat is being transported down the gradient. The rate of 
heat transport thus realized is the basic unknown of the theory and 
depends on details of the flow field. Kerstein (refs. 3 and 4, and references 
given there) has carried out extensive studies of turbulent transport of a 
scalar based upon a baker's map description of the microscales. Kerstein's 
approach utilizes a probability distribution function for the position and 
size of the map. In the context of turbulent mixing the present remarks 
amount to a deterministic variant of Kerstein's class of models, with 
emphasis on the transport away from a boundary arising, for example, in 
turbulent Rayleigh-B6nard convection. 

The renormalization procedure discussed in Section 8 is a simple 
example utilizing the one-dimensional setting of the problem. When the 
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velocity field itself is one dimensional in that it is a parallel flow, a large 
class of renormalizable models become accessible to rigorous treatment, as 
has been shown by Avellaneda and Majda/5'6) 

2. A D V E C T I O N  

When D = 0 the process of renewal of the mean temperature gradient 
can be realized in a model based on Eq. (4) by extending the initial mean 
gradient to all y and introducing baker's maps for all points in the strip 
0~< y <  1. Let the first action of the maps be as described above; now 
rood 1 in y for the temperature gradient, but let the second mapping be 
carried out on intervals obtained by a vertical shift of 1/2. In particular, 
then, for our basic interval (interval 0 say, given by 0 ~< y < 1), the second 
step will combine the top half with the bot tom half of the interval above, 
say interval 1, while the lower half will combine with the top half of the 
interval below, say interval 1 (see Table I). With initial temperature 
G(y-1/2), the mean heat in the top and bot tom halves of interval 1 is 
3G/4. We focus on interval 0, with initial mean temperature - G / 4  in the 
lower half, + G/4 in the upper half. After the first action of the map, these 
change to the identical "mixed" values 0; see above. (Note that interval n 
now has mean temperature n in both halves.) After the second application 
of the (shifted) map, however, we see that the temperature in interval 0 has 
a mean of G/2 in the upper half and -G/2 in the lower half, so an 
imbalance is restored, but to values different from the initial ones (G/4 and 

T a b l e  I. A v e r a g e s  o v e r  1 / 4  I n t e r v a l s  a 

Interval Initial value Map 1 Map 2 Map 3 Map 4 

1 11/8 5/4 2 3/2 2 
9/8 3/4 1 1/2 1 
7/8 5/4 1 32 1 
5/8 3/4 0 1/2 0 

0 3/8 I/4 1 1/2 1 
1/8 -1/4 0 -1/2 0 
1/8 1/4 0 1/2 0 

-3/8 -1/4 -1  -1/2 -1 

-1  -5/8 -3/4 0 -1/2 0 
-7/8 -5/4 -1 -3/2 1 
-9/8 -3/4 - t  -1/2 -1 

-11/8 -5/4 -2  -3/2 -2  

a Two successive maps = S. 
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-G/4). Notice, however, that two further applications of the map lead to 
the same values of G/2 and - G/2 in interval 0, so that we are indeed main- 
taining the same mean temperature over halves of the intervals modulo 2 
in applications of the map. The temperature distribution becomes a very 
complicated discontinuous function of y after a few iterations (we resolve 
it into quarter intervals in Table I), but if we regard dc/dy as a distribution, 
the mean gradient over an interval [a,b] is just {c(b)-c(a)}/lb-al, 
whose average value as a function of b is G. 

Finally, we may compute the effective diffusivity in this model. We 
have already observed that the first application of the map led to a trans- 
port of G/8 units of heat across the midlines of each interval. The second 
application transfers G/4 in through the top boundary and out through the 
bottom boundary of each interval. Thereafter, the transfers are G/4 in both 
cases, leading to an equilibrium heat flux of G/4 units of heat per over the 
time associated with two applications of the map. If we define the effective 
diffusivity as 

Den. = flux/G - L2/2"c (5) 

where L is the physical dimension of a side of the basic interval and r is 
the time required for one application of the map, we see that 

Dee;= L 2/8"c (6) 

The "shift" model illustrates how baker's maps can produce advective 
transport in its purest sense, namely a transport of heat independent of 
molecular diffusivity. Clearly if the temperature is resolved on a smaller 
scale than that shown in Table I, iteration leads to an equilibrium with 
more structure. We address the problem of determining the general equi- 
librium structure in the next section. Another basic question is the trans- 
port away from a rigid plane held at fixed temperature. The "shift" model 
cannot be extended up to such a plane. Finally, the scale of the baker's 
maps is an essential variable, (34), associated in a turbulent flow with the 
continuous distribution of eddy size. What happens if maps on many scales 
occur simultaneously? These and other matters can be addressed within the 
relatively simple class of deterministic models considered here. 

3. F ILTERED E Q U I L I B R I A  W I T H O U T  D I F F U S I O N  

We now refer to the period 2 map just outlined as the shift map. It is 
a paradigm of a mixing process based on a baker's map. We denote its 
operation on c(y) by Sc(y). We next show how to represent the 

822/63/5-6-7 
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temperature field generated by S in terms of a new map on a single fixed 
interval. 

We introduce a period 1 map which is closely associated with a full 
period (2) of the shift map. The basic map T is defined by 

Tc' ' ~ 'c (2y)-1 /2  if 0 ~ < y < 1 / 2  
~ Y ) - ~ . c ( 2 y - l ) + l / 2  if 1/2~<y< 1 

(7) 

Here we have included constants + 1/2 which restore the heat differential 
as part of the map, provided we now normalize the problem by setting 
G = 1 in the shift map. The basic map thus is of interest as a period t map. 
Indeed the idea is to replicate the transport by shifts as direct addition of 
heat, which can be effected on sufficiently small scales by molecular diffu- 
sion, although here such diffusion is absent. 

To compare the maps S and T, we introduce the m-filter Fm, defined 
as the operator which maps c(y) into the piecewise constant function on 2 m 
intervals of length 2 m, in each of which c(y) is replaced by its local 
average. Thus 

Fmc(y) - 2 ~ ~2 ~k 
~2 re(k- -  

c(y) ay for 2-m(k-1)<~ y < 2  i n k ,  

k = 1, 2,..., 2 m (8) 

We denote the range of Fm by Rm. We now have the following elementary 
property: 

Lemma 1. If T and Fm are defined by Eqs.(7) and (8), then 

TFm = Fm + 1 T. 

This result can be obtained by noting that TFmc(y) is in the range of 
Fm+l. Indeed, (al,..., a~) t is a column vector determining the constants 
involved in Fmc(y). Thus, TFmc(y) is determined by the vector 
(ax + 1/2,..., a m + 1/2, al - 1/2,..., a m - -  1/2)', which is seen to also determine 

Fm+lTC(y). 
We now may state the following result. 

T h e o r e m  1. Let co(y) = -1/2 ,  0 ~< y < 1/2; = 1/2, !/2 ~< y < 1. Then 
Tmco(y) is an element in the range of F~ +1 which solves 

Fm+iTc(y)=Fm+lC(y), m = 0 ,  1, 2,... (9) 

This is the only solution of Eq. (9) belonging to Rm+l and having zero 
average over the interval [0, 1 ]. 
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To prove this, we use induction. Note first that by direct calculation 
FI Tco = F1 co. Now assume that Fm Tmco = Fm T m ~ Co. Then, using the last 
equations together with Lemma 1 (twice), we have 

Fm+iTm+lco=TFmTmco=TFm Tm lco=Fm+lTmC o (10) 

which completes the induction step and establishes the solution. To prove 
uniqueness, let an element of Rm+ 1 be denoted by a = (al ..... a2m+l)'. Then 
Eq. (9) can be represented as a matrix equation Aa = f, where f is a column 
of 2 m l's followed by 2 m - l's. The corresponding homogeneous equation 
has only solutions with all entries equal. The solution of (10) is therefore 
unique up to a multiple of such a vector, a suitable normalization being the 
condition in the theorem. This completes the proof. 

Note that all c(y) such that Tmc(y)= Tmco(y) provide acceptable 
solutions, which form an equivalence class for each element of Rm +1" 

The intuitive meaning of Theorem 1 is that iterates of Co under the 
basic map generate increasingly fine-scale, filtered "equilibrium tem- 
peratures" for the transport problem given by the basic map. We now show 
that these equilibria are also equilibria under the shift map, so that the 
basic map can replace the shift map as a generator of equilibria. 

T h e o r e m  2. D=-Fm+ITmco is also the (m+ 1)-filtered equilibrium 
for the period-2 shift map S. 

We show this with a diagrammatic method. We let A: B denote a 
square with A ( 2 y - 1 )  in the top half, B(2y) in the bottom half, and 
similarly A: B: C: D will refer to quarter-squares from top to bottom. 
Starting with a square S, the basic property is that S =  S +  1/2: S - 1 / 2  
through an (m+  1)-filter. Now after two steps the shift map produces 
S + 1 : S: S: S -  1. But, again working through an (m + 1)-filter, we see that 

S +  1: S: S: S -  1 

= (S+  1/2: S -  1/2)+ 1/2: ( S +  1/2: S -  1 /2 ) -  1/2 

= (S+  1/2: S -  1/2)= S 

where we have simply applied the above property of S on intervals of 
arbitrary length. 

Finally, we exhibit the spectral form of the basic map. We consider 
functions odd about y = 1/2, and therefore sine series of the form 

c(y) = ~ a~ sin(2~zny) (11) 
n - - 1  
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r We compute Let To(y) have Fourier coefficients a n. 

~ -2/(Tzn) if n is odd 
r =  (12) 

an L a./2 if niseven.  

Thus if c is an equilibrium, satisfying Tc = c, then we have a formal series 
of the form 

c ( y ) = - 2 / ~  ~ ~ 1 / ( 2 p - l ) s i n [ 2 q r c ( 2 p - 1 ) y ]  (13) 
p = l  q = l  

The antiderivative of this function converges absolutely. 
Another representation for the same function comes from an expan- 

sion in a Haar basis. Let H ( y ) =  sgn(y), lYl ~< 1/2; = 0, lYl > 1/2. Then it is 
clear from the iterations of the basic map that another representation of the 
equilibrium is 

2 k l 

2c (y )=  ~ Z H ( Z k - I [ Y - - ( 2 j - - 1 )  2 k]) (14) 
k = l  j = l  

where filtering through Fm is truncation at k = m. 

4. P IECEWlSE  LINEAR F U N C T I O N S  

We now consider a natural generalization of the basic map, which can 
be used in applications to advection of a magnetic field. Suppose, in par- 
ticular, that we seek to construct results analogous to those of (7) within 
the class of piecewise linear functions. The motivation for this generaliza- 
tion comes from the magnetic problem of the unsteady fast kinematic 
dynamo. The SFS map can be reduced (1) to an operator G acting on a 
complex-valued function b(y), defined on [0, 1), given by 

Gb( y ) = 2 sgn(1/2 - y) e 2~i~'(y - l /2 ) b('c( y ) ) 

where 

z(y) ~ min(2y, 2 - 2y) 

(15) 

(16) 

is the '"tent" function and ~ is the shear parameter. We now note that 

log e-i~/2Gb(y) = log b(~(y)) -I- log 2 + 2~ic~(y - 1/2) + sgn(y - !/2) i~z/2 

(17) 
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We thus now introduce a basic map on complex-valued functions 
c(y) = log b(y) defined by 

[c(2y) + 2~i~(y - 1/2) - ire~2 if 0 ~< y < 1/2 
T c ( y ) = - { c ( 2 - 2 y ) + 2 ~ z i ~ ( y - 1 / 2 ) + i z / 2  if 1 / 2 ~ < y < l  

(18) 

This new map differs from (7) in the fact that the tent map "turns over" the 
upper half of the square by a fold, by the complex-valued "temperature," 
and by the fact that the added function which is piecewise-linear in y 
instead of piecewise constant. The presence of the fold and complex values 
does not affect the essential argument in Section 3. When applied to 
piecewise-constant functions, the filtered equilibria may be computed as 
before by iteration from a simple initial condition. However, our previous 
arguments depended upon the piecewise-constant functions used, and we 
must modify our formulation. 

The general form of our map is now 

Tc(y) = c(r(y)) + 2a(y - 1/2) + b sgn(y - 1/2) - c(r(y)) + 7(Y) (19) 

for arbitrary complex a, b. In order to proceed, we need a projection onto 
piecewise-constant fields at a given level of filtering. To see what has to be 
done, we consider a filter at a level m = 1. We would then expect, for a 
proper definition of projection, that 7(Y) as defined above would be an 
equilibrium. We have 

- 2 a y + 2 a + 2 b  if 3 /4~<y< 1 

- 2 a y + 2 a  if 1 /2~<y<3/4  
TT(Y) = 6ay - 2a if 1/4 ~< y < 1/2 (20) 

6 a y - 2 a - 2 b  if 0 ~ < y < 1 / 4  

We can see from the last equation how to define the appropriate filter 
to produce once again our initial function 7(Y). That is, we shall define 
a projection P1 so that P ITT=7-  Let F m be as before the projection 
onto piecewise-constant fields, constant over intervals Ira--{(0,2-m), 
(2-m, 21 m) ..... (1 - -2  -m, 1)}, I0 = {(0, 1)}. We allow F,, to operate on 
distributions provided the function is regular on Ira. Define b* = Pmb(y) as 
a function piecewise linear on Im, whose derivative is piecewise constant on 
Im 1, such that 

Fm_ldb*/dy=Fm_l db/dy, Fmb*=fmb (21) 

In particular, P~ T7 must then have derivative 2a on Io, and have average 
value a/2 + b for 1/2 ~< y < 1 and - a/2 - b for 0 ~< y < 1/2. This uniquely 
determines the piecewise linear function P1 T7 as 7. 
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With this definition it follows that TPn, = Pm +1 T, and that T "  7 then 
solves Pm + I T b ( y ) =  Pm + l Y, thus yielding a result paralleling Theorem 1. 

For the magnetic problem our interest is in the growth rate p of the 
magnetic flux. We compute p from iterates of our basic map as follows: 
Introduce the phase decrement 

fo erm~ dy I, qm = Qm/Qm-1, Qm -= m = 1, 2,... (22) 

Then 

p = l o g 2 +  lira logqm (23) 
m ~ o v  

Note that in the magnetic problem the constants a, b in 7 are given by 

a = 2nio:, b = rci/2 (24) 

5. A B O U N D A R Y - V A L U E  P R O B L E M  W I T H  D I F F U S I O N  

We now turn to a boundary-value problem, where the heat is applied 
through "walls," here the points 0 and 1, held at fixed temperature. We 
consider the case where the top wall, at y = 1, is held at temperature 1/2 
and the bottom wall, at y = 0, is held at temperature -1 /2 .  (Recall the 
layer has a physical thickness L.) A baker's map is applied to the interval 
(0, 1), the diffusion with coefficient D is allowed to act for a time z. We can 
now represent the temperature Cm(y) after the ruth step (where one step is 
one map-diffusion sequence) in the form 

Cm(y ) = y - 1/2 + ~ am, n sin(2~zny) (25) 
n = l  

After one step, it is easy to show that the temperature field has the same 
structure with new Fourier coefficients 

am + l.n = ( - 1 )" - 1 Dn/rcn ' n odd 

= [ ( - 1 ) "  l/~zn+am,,,/2]D,,, neven (26) 
where 

D~ = exp( - 4n2n 2Dz/L 2) (27) 

From this we obtain the equilibrium temperature distribution at times 
I = " t ' - - "  

Ceq(y)= y--1/2"t-  ~, ~ ( - -1)  n t/nn sin(Z'~nnyl 

x exp [ -- 4n2n2Dr(4 m -- 1 )/3L 2 ] (28) 
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Evaluating D dceq/dy at y = 1, we obtain the effective diffusivity 

Doer=D+ ~ ~ ( - 1 )  ~ 12mDexp[-47zZn2Dr(4~-l)/3L2] (29) 
n = l  rn=l 

We rewrite the second term on the right, i.e., the advective contribution, in 
the form 

Dadv=D1/2L~/21"c~ "~ i i ( - - 1 ) n  1 
n n = l  m = l  

- - 2 m z e x p [ - z 2 ( 4  m -  1)] (30) 

We now observe that the function 

oo 
F(z)= ~ 2mzexp[--(2mZ) 2] (31) 

m = l  

has a limit as z--+ 0. Indeed, we see that F(1/2) exists and that 

F(z/2) = z exp( - z  2) + F(z) (32) 

It follows that the sequence F(2 k) is monotone increasing and bounded 
above by 1 + F(1/2). Thus the limit exists. We compute F(1 /2)=  0.4045112 
and F(0) = 1.2765484 to seven places. Thus 

Dadv = kL(D/r) 1/2, k - F(0) , ,~ /2~ log 2 = 0.2439178... (33) 

The heat flux through y = 1 is actually a function of time between applica- 
tions of the map, 

Oadv = ~ ~ ( _ 1 ) , - 1  2mDexp{_&z2nZD[r(am 1_ 1)/3+tam-1]/L 2} 
n = l  m = l  

(34) 

where we measure time in units of r. Computing the mean on 0 4 t 4 r, we 
find we again may make use of the function (31), and obtain 

(Oadv) 4 (35) = ~ D a d  v 

We evaluate the effective diffusivity divided by D in terms of the P6clet 
number P, 

DefdD- l+(Dadv/D)~l+4k/3P 1/2, p - L 2 / D r > I  (36) 

Note that the square root dependence on P is typical of boundary layer 
enhancement of B6nard convection. In the cellular flows occurring there, 
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this enhancement is due to plume formation in boundary layers parallel to 
the direction of the mean temperature gradient. (For references pertaining 
to this problem and discussion of the exact Wiener Hopf solution of the 
boundary-layer problem see ref. 7.) In the present example, the baker's map 
brings cool fluid to the top wall and warm fluid to the lower wall. In time 

a diffusive layer of thickness (Dr) ~/2 is formed, and it is these layers, here 
perpendicular to the mean gradient, which are brought into the interior by 
subsequent maps and which produce the enhancement of heat flux given by 
the second term on the right of (36). 

One further result can be obtained immediately from (34), and that is 
the mean-field value for Deff obtained for small P. Integrating the flux and 
discarding the exponentially small terms, we obtain 

D ~ I +  1--~- ~ (--1)"-1 V 
D ~ 47r 2 n ~ P =  1 + ~ ,  P ~ I  (37) 

r t - - 1  

6. A B O U N D A R Y - L A Y E R  A P P R O X I M A T I O N  

We now show that a simple boundary-layer approximation gives a 
remarkably close approximation to (36) for small D. We shall assume that 
the heat flux on each boundary during the diffusion phase occurs into a 
thin, O((Dz) 1/2) layer which may be studied as in a semi-infinite domain 
with a homogeneous condition at infinity. More precisely, we seek a 
function cb(y) defined in y >~ 0 satisfying 

Cb(0) = 1, Cb(--Oe)=0, H~cb(2y)=cb(y) (38) 

where H~ is the heat operator for the domain y > 0, mapping initial to final 
temperatures given the wall temperature of 1. This fixed-point problem is 
easily solved by working with the temperature gradient and introducing an 
initial gradient of the form exp(-cy2); we obtain 

eb(y) = (2/X/-~) Erfc(r/), t/= yL  ~ / [ 4 ( D z )  ~/2 ] (39) 

Then 

c(y) = -cb(y) /2  + Cb(1 -- y)/2 + 1/2 (40) 

From (39) we obtain the layer diffusivity 

Db/D = 1 + 4kS3Pe 1/2, kb = (3/~z)1/2/4 = 0.2443031 (41) 

where we have used the fact that the flux at time z stands here again in 
ratio 4/3 to the time mean of the heat flux. Comparing (41) with (33), we 
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see that the exact effective diffusivity is given by the boundary-layer 
approximation to an accuracy of about 0.0016. This is quite surprising, 
since the boundary-layer approximation neglects completely the contribu- 
tions of layers of fluid which were heated and cooled at the walls and then 
mapped into the interior of the layer. These interior layers occur as 
~ however, and we can expect considerable cancellation as well as 
exponential decay of the residual temperature pulses. This is perhaps why 
the principale contribution is the local heat input from the wall. 

This result invites exploitation in the more difficult environment of 
multiple-scale baker's maps. Let To - T denote the map of the unit square, 
T1 the map consisting of two maps of size l/2 stacked one over the other, 
and so on. Let Tm be applied with period rm, where for convenience we 
assume that co is divisible by "c m for each m ,  "(O/"(m = Pm' For a finite num- 
ber of scales, m = 1,..., M, say, we may, in the limit of small D, adopt the 
boundary-layer approximation as before, since the boundary layer will be 
small compared to the smallest map occurring in the sequence. Within the 
boundary layer, moreover, the effect of the maps T m is the same for all m. 
Thus, if H,  stand for diffusion according to the heat equation for time ~, 
the operations over one cycle are equivalent to 

HeM T~'mH~M T ~pM 1 ... H~M T "1 (42) 

where the positive integers #i depend upon the Pm. If we synchronize all 
scales to start simultaneously, then /~ = M .  For  example, if M =  2 and 
rl = %/2, we obtain the one cycle of maps H~o/2TH~o/2 T 2. 

The problem of main interest is, however, when the smallest scale is 
zero, so that, for any D >0 ,  some maps operate in a regime where the 
boundary-layer approximation is not valid and molecular diffusion is 
important on the corresponding time and length scales. We turn now to the 
numerical calculation of transport by maps on more than one scale. 

7. N U M E R I C A L  SOLUTIONS WITH MULTIPLE SCALES 

Our plan is to utilize a binary partition of the unit interval for 
numerical solution of the heat equation using a fast Fourier transform, 
embedded in a binary partition into maps. We divide the interval into 
N = 2 s intervals of length 2-JL,  with 2 K of these intervals used to resolve 
a map. There are then 2 M maps, where M = - J - K .  Here J>K>~O. If the 
time interval between maps (i.e., the period) is ~, we need to resolve down 
well below (D~:) ~/2. Thus, in practice we want 2J>> log L2/DUlog 2 ~ M in 
order to study cases where the boundary-layer approximation is not 
possible. 
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The first problem to consider is the periodic application of 2 ~4 maps 
with period r. Because of the symmetry of the boundary-value problem, the 
solution can be obtained by rescaling the case M = 0 studied in Section 5. 
For example, (36) again applies with P replaced by 4-raP. In Fig. l, curves 
1 and 2 compare the boundary-layer approximation to log(2Defr/D) vs. 
log P with the exact result given in Section 5 as computed by the program 
using fast Fourier transforms. The asymptote to the left matches well with 
the mean field approximation for small P given by (37). 

Curve 3 and 4 of Fig. 1 are for the following multiple-scale cases: For 
curve 3, two maps on intervals of length L/2 are applied with period ~/2, 
while a single map on scale L is applied with period ~. For curve 4, maps 
on seven scales, i.e., on equal intervals of length 2 - M for M = 0, 1 ..... 6, are 
applied simultaneously with period r. The cases enhance transport, but 
again have a p1/2 behavior at large P. For both 3 and 4, the slope at the 
smaller values of P is larger, indicating enhanced transport associated with 
the smaller scales, but the asymptotic behavior for large P is essentially the 
same. This can be understood from the boundary-layer structure. Near the 
wall dcb/dy is a Gaussian with coefficient 3P/16 at the termination of one 
cycle; cf. (39). For the 2, 2 +  1 case this coefficient changes to 63P/160. 
Computing integrated fluxes over the two intervals period ~/2, we find that 
k b in (41) is increased by a factor 1.67 approximately. This yields an 
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Fig. 1. log(2Defr/D) vs. log P. Curve 1: boundary-layer approximation (36) for a single map. 
Curve 2: Numerical computation for a single map. Note that for 2 M equal maps, curves 1 and 
2 are shifted to the right an amount 2Mlog 2. Curve 3:2 maps at t=O+, 2 +  1 maps at U2, 
2 maps at ~, and so on. (Here 2 + 1 means two maps on the scale L/2 are followed by one 
map on scale L.) Curve 4 : 1 + 2 + 4 + 8 + 1 6 + 3 2 + 6 5  maps with period ~. In all cases 
N =  1024. 
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Fig. 2. c(y) vs. y after ten iterations. Curve 1 : 1 + 2 + 4 + 8 + 16 + 32 + 64 maps with period 
~, P= 40%z 2. Curve 2: Same as curve 1, P=40~ 2. Curve 3:2 maps at t=0+ ,  2+ 1 maps at 
~/2 (cf. caption for curve 3 of Fig. 1 ), P = 400~ 2. Curve 4: Same as curve 3, P = 40~ 2. 

increase in the ordinate of Fig. 1 of 0.51, compared  with the computed  
value of 0.49. For  curve 4 the large compression from the seven maps puts 
the enhancement  of k b according to the boundary- layer  approximat ion 
very close to its max imum xf3, increasing the ordinate in the figure by 0.54. 
The computed  value of is about  0.48. Curve 4 suggests that  the 
asymptote  is realized once log P exceeds about  8, corresponding to a 
boundary  layer thickness of  about  1/27. This is reasonable since only a few 
of the seven scales are needed to attain the limiting form, and a thickness 
of 1/27 allows maps down to size 2 -4  to easily contain the boundary  layer. 

We now turn to cases which are attractive for renormalizat ion of the 
effective transport ,  and introduce the enhanced t ransport  associated with 
the heat transfer of the basic map on arbitrarily small diffusive scales. The 
approach  will be an obvious application of renormalizat ion principles to 
the large-P theory. If we take the P6clet number  as the t ransport  
parameter,  then (36) may be written 

Peer= F(P)=- P/(1 + 4k x /P /3 )  (43) 

We consider maps on equal intervals of length L j =  2-M~L with period 
~j = 2 ~.jM~, where Mj is an integer and 2 is a real number.  Then in the 
asymptot ic  regime PI=,/j1F(,,,jP) is the effective P6clet number,  where 
~j=L~zj+I/L~+lr j. If L I ~ L 2 ~  "" ~Lr '~Lr+I=-L  denotes some finite 
set of nested lengths, then if the boundary  layer for maps  of size Lj+ 1 con- 
tains many  maps on the smaller scale Lj, we can represent the effect of the 
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smaller maps in terms of an effective P, relative to the scale Lj + ~. The con- 
dition that this is a reasonable assumption is that Lj/Lj+1 ~4/(3Pj) 1/2. In 
this case we can compute Pr+ 1/Po (where Po = P) by iteration, 

Pj+I - 1  (44) =Yj+iF(Tj+IPj), j = 0 ,  1 ..... r 

We show in Fig. 3 the case r = 1 with maps of size L/8 and period U8 
embedded in the single map. The condition for validity of the renormaliza- 
tion requires both that P be large and that the above condition on the Ls 
be satisfied. In the present case, at P =  600 the boundary layer contains 
about two small cells, certainly the limit of validity. The break in curve 2 
of Fig. 3 toward the asymptotic slope of 1/2 is consistent with this estimate. 
When log P is between 4 and 9 approximately, the p3/4 dependence 
obtained asymptotically is roughly followed. The fact that the asymptotic 
formula overestimates the transport is presumably a result of the fact that 
this "window" does not extend to high enough P; cf. Fig. 1. 

We now generalize the asymptotic expression to an infinite number of 
scales, through a cascade to intervals of arbitrarily small size. We use 

P2+1 ~ 3P/(16k27j+ 1) (45) 

Let Mi = iM, )v = 2, where 2 is a real constant and 2-M is the scale reduc- 
tion in one step of the cascade. Iteration through r + 1 steps then yields 

I 3 1(") log Pr+ 1 = log  .16kZ2U ,_a)M ~ - ~  (46) 
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Fig. 3. log(2Do~/b) vs. log P. Renormal i za t ion  on one microscale,  r = 1, L 1 = L/8, :1 ='c/8. 
Curve 1: Asympto t i c  app rox ima t ion  for large P, given by log(2P/P2), where Pz=F(P1), 
P1 = 8f(P/8). Curve  2: C o m p u t a t i o n s  for the same sequence of maps.  
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In the limit of large r we find 

l/P~r ~ = 16k22 (~-- 2~M/3 (47) 

We thus.obtain an effective diffiJsivity which is independent of molecular 
diffusivity, but without the use of the shift. The enhanced transport here 
arises from the fact that there are always scales sufficiently small to act like 
the basic map, in that the local diffusivity is of order 1. This allows heat 
to be transported away from a wall, where it is further mixed up the 
sequence of maps of ever larger scale. We note that if M =  1 in (47) and 
2 takes on the Kolmogorov value of 2/3, we obtain Derr~/L 2 = 0.126, which 
is almost exactly the value for the shift map; cf. (6). 

8. C O N C L U D I N G  S U M M A R Y  

Although simple baker's maps are discontinuous transformations in 
both space and time, they can mimic certain features of transport of both 
scalar and vector fields by continuous fluid flows at small molecular dif- 
fusivity. In effect, a map provides a simple mixing process in the manner of 
a turbulent "eddy." For the case of heat conduction through a fluid layer, 
our kinematic study shows that baker's maps can simulate turbulent trans- 
port of a kind that depends strongly on molecular diffusion at small scales. 
On the other hand, away from a rigid boundary a simple shift map can 
achieve the same result in an ideal fluid. There are analogous results for the 
transport of a nearly material vector field, but in the case of fast dynamo 
theory there is as yet no technique comparable to the boundary- 
layer theory used here. In that problem the magnetic field is distributed 
intermittently throughout the fluid, but it may be that these patches of field 
can be treated individually as free boundary layers. 

The large-P theory developed here parallels that of certain simple 
steady flow fields, (8'9) although the source of the p~/2 behavior of Deff/D for 
large P is different for maps and fluid eddies. For closed eddies in a thermal 
gradient the fluid which is warmed or cooled at the eddy boundary is swept 
into a plume extended in the direction of the mean gradient, and it is here 
that the enhanced mixing occurs. For a map the fluid is swept (at least in 
part) directly into the interior. For extensions of the theory these differen- 
ces may be minor, however. In particular, the results given in refs. 8 and 9 
would appear to allow an analogous renormalization argument over fluid 
eddies on many scales. 
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